首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   24篇
  2024年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   8篇
  2011年   7篇
  2010年   7篇
  2009年   3篇
  2008年   12篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   8篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1924年   2篇
  1923年   5篇
  1922年   1篇
  1921年   1篇
排序方式: 共有195条查询结果,搜索用时 312 毫秒
81.
Carbon monoxide dehydrogenase/acetyl-CoA synthase catalyzes acetyl-CoA synthesis from CO, CoA, and a methylated corrinoid iron-sulfur protein, which acts as a methyl donor. This reaction is the last step in the Wood-Ljungdahl pathway of anaerobic carbon fixation. The binding sequence for the three substrates has been debated for over a decade. Different binding orders imply different mechanisms (i.e. paramagnetic versus diamagnetic mechanisms). Ambiguity arises because CO and CoA can each undergo isotopic exchange with acetyl-CoA, suggesting that either of these two substrates could be the last to bind to the acetyl-CoA synthase active site. Furthermore, carbonylation, CoA binding, and methyl transfer can all occur in the absence of the other two substrates. Here, we report pulse-chase studies, which unambiguously establish the order in which the three substrates bind. Although a CoA pulse is substantially diluted by excess CoA in the chase, isotope recovery of a pulse of labeled CO or methyl group is unaffected by the presence of excess unlabeled CO or methyl group in the chase. These results demonstrate that CoA is the last substrate to bind and that CO and the methyl group bind randomly as the first substrate in acetyl-CoA synthesis. Up to 100% of the methyl groups and CoA and up to 60-70% of the CO employed in the pulse phase can be trapped in the product acetyl-CoA.  相似文献   
82.
This paper describes the genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), which is the model acetogenic bacterium that has been widely used for elucidating the Wood-Ljungdahl pathway of CO and CO(2) fixation. This pathway, which is also known as the reductive acetyl-CoA pathway, allows acetogenic (often called homoacetogenic) bacteria to convert glucose stoichiometrically into 3 mol of acetate and to grow autotrophically using H(2) and CO as electron donors and CO(2) as an electron acceptor. Methanogenic archaea use this pathway in reverse to grow by converting acetate into methane and CO(2). Acetogenic bacteria also couple the Wood-Ljungdahl pathway to a variety of other pathways to allow the metabolism of a wide variety of carbon sources and electron donors (sugars, carboxylic acids, alcohols and aromatic compounds) and electron acceptors (CO(2), nitrate, nitrite, thiosulfate, dimethylsulfoxide and aromatic carboxyl groups). The genome consists of a single circular 2 628 784 bp chromosome encoding 2615 open reading frames (ORFs), which includes 2523 predicted protein-encoding genes. Of these, 1834 genes (70.13%) have been assigned tentative functions, 665 (25.43%) matched genes of unknown function, and the remaining 24 (0.92%) had no database match. A total of 2384 (91.17%) of the ORFs in the M. thermoacetica genome can be grouped in orthologue clusters. This first genome sequence of an acetogenic bacterium provides important information related to how acetogens engage their extreme metabolic diversity by switching among different carbon substrates and electron donors/acceptors and how they conserve energy by anaerobic respiration. Our genome analysis indicates that the key genetic trait for homoacetogenesis is the core acs gene cluster of the Wood-Ljungdahl pathway.  相似文献   
83.
84.
85.
86.
87.
CO dehydrogenase/acetyl-coenzyme A synthase (CODH) is the central enzyme in the pathway of acetyl-coenzyme A biosynthesis in Clostridium thermoaceticum. It catalyzes the interconversion of CO and CO2 and the synthesis of acetyl-coenzyme A from the methylated corrinoid/iron sulfur protein, CO, and coenzyme A. It is a nickel-iron-sulfur protein and contains two subunits in the form (alpha beta)3. Reported here is the cloning and sequencing of the genes for both subunits of CODH. The gene for the alpha subunit codes for a protein with 729 amino acids and a molecular weight of 81,730, and the beta gene for a protein with 674 amino acids and a molecular weight of 72,928. The alpha subunit follows the beta subunit by 23 bases and the genes for both subunits are preceded by a sequence which is similar to the Shine-Dalgarno sequence of Escherichia coli. No significant amino acid sequence homology has been found to any known sequence. Labeling CODH with 2,4-dinitrophenylsulfenyl chloride and isolating labeled peptide fragments demonstrated that a tryptophan, residue 418 of the alpha subunit, is protected by coenzyme A and thus may be considered a potential part of the coenzyme A site.  相似文献   
88.
89.
Recent inferences of phylogeny from molecular characters, as well as a reexamination of morphological and biological characters, reject the monophyly of the nematode genus Koerneria Meyl, 1960 (Diplogastridae). Here, Koerneria sensu lato is revised. The genus, which previously consisted of 40 species, is separated into three genera. Almost all of the transferred species are moved to the resurrected genus Allodiplogaster Paramonov & Sobolev in Skrjabin et al. (1954). Koerneria and Allodiplogaster are distinguished from each other by a weakly vs. clearly striated body surface, an undivided vs. divided stomatal cheilostom, and arrangement of the terminal ventral triplet of male genital papillae, namely in that v5 and v6 are paired and separated from v7 vs. v5–v7 being close to each other. Allodiplogaster is further divided into two groups of species, herein called the henrichae and striata groups, based on both morphological and life-history traits. The henrichae group is characterized by papilliform labial sensilla and male genital papillae, a conical tail in both males and females, and an association with terrestrial habitats and insects, whereas the striata group is characterized by setiform labial sensilla and male genital papillae, an elongated conical tail in both sexes, and an association with aquatic habitats. A second genus, Anchidiplogaster Paramonov, 1952, is resurrected to include a single species that is characterized by its miniscule stoma and teeth, unreflexed testis, and a distinct lack of male genital papillae or stomatal apodemes. Lastly, one further species that was previously included in Koerneria sensu lato is transferred to the genus Pristionchus Kreis, 1932. The revision of Koerneria sensu lato is necessitated by the great variability in its subordinate taxa, which occupy a variety of habitats, in addition to the increased attention to Diplogastridae as a model system for comparative mechanistic biology.  相似文献   
90.
Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis in which coenzyme B and methyl-coenzyme M are converted to methane and the heterodisulfide, CoMS-SCoB. MCR also appears to initiate anaerobic methane oxidation (reverse methanogenesis). At the active site of MCR is coenzyme F430, a nickel tetrapyrrole. This paper describes the reaction of the active MCR(red1) state with the potent inhibitor, 3-bromopropanesulfonate (BPS; I50 = 50 nM) by UV-visible and EPR spectroscopy and by steady-state and rapid kinetics. BPS was shown to be an alternative substrate of MCR in an ionic reaction that is coenzyme B-independent and leads to debromination of BPS and formation of a distinct state ("MCR(PS)") with an EPR signal that was assigned to a Ni(III)-propylsulfonate species (Hinderberger, D., Piskorski, R. P., Goenrich, M., Thauer, R. K., Schweiger, A., Harmer, J., and Jaun, B. (2006) Angew. Chem. Int. Ed. Engl. 45, 3602-3607). A similar EPR signal was generated by reacting MCR(red1) with several halogenated sulfonate and carboxylate substrates. In rapid chemical quench experiments, the propylsulfonate ligand was identified by NMR spectroscopy and high performance liquid chromatography as propanesulfonic acid after protonolysis of the MCR(PS) complex. Propanesulfonate formation was also observed in steady-state reactions in the presence of Ti(III) citrate. Reaction of the alkylnickel intermediate with thiols regenerates the active MCR(red1) state and eliminates the propylsulfonate group, presumably as the thioether. MCR(PS) is catalytically competent in both the generation of propanesulfonate and reformation of MCR(red1). These results provide evidence for the intermediacy of an alkylnickel species in the final step in anaerobic methane oxidation and in the initial step of methanogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号